Allopregnanolone reverses neurogenic and cognitive deficits in mouse model of Alzheimer's disease.
نویسندگان
چکیده
Our previous analyses showed that allopregnanolone (APalpha) significantly increased proliferation of rodent and human neural progenitor cells in vitro. In this study, we investigated the efficacy of APalpha to promote neurogenesis in the hippocampal subgranular zone (SGZ), to reverse learning and memory deficits in 3-month-old male triple transgenic mouse model of Alzheimer's (3xTgAD) and the correlation between APalpha-induced neural progenitor cell survival and memory function in 3xTgAD mice. Neural progenitor cell proliferation was determined by unbiased stereological analysis of BrdU incorporation and survival determined by FACS for BrdU+ cells. Learning and memory function was assessed using the hippocampal-dependent trace eye-blink conditioning paradigm. At 3 months, basal level of BrdU+ cells in the SGZ of 3xTgAD mice was significantly lower relative to non-Tg mice, despite the lack of evident AD pathology. APalpha significantly increased, in a dose-dependent manner, BrdU+ cells in SGZ in 3xTgAD mice and restored SGZ proliferation to normal magnitude. As with the deficit in proliferation, 3xTgAD mice exhibited deficits in learning and memory. APalpha reversed the cognitive deficits to restore learning and memory performance to the level of normal non-Tg mice. In 3xTgAD mice, APalpha-induced survival of neural progenitors was significantly correlated with APalpha-induced memory performance. These findings suggest that early neurogenic deficits, which were evident before immunodetectable Abeta, may contribute to the cognitive phenotype of AD, and that APalpha could serve as a regenerative therapeutic to prevent or delay neurogenic and cognitive deficits associated with mild cognitive impairment and Alzheimer's disease.
منابع مشابه
Cognitive Rehabilitation An Effective Intervention to Decrease the Cognitive Deficits in Older Adults With Alzheimer Disease
Objectives: The aim of present study was to investigate the effect of cognitive rehabilitation, a new and non-pharmacological approach to reduce memory and other cognitive deficits in Alzheimer's disease. Methods & Materials: This study was a quasi-experimental research, in singlesubject study-with control group- and based on an A-B design. That was conducted in two groups of control and exp...
متن کاملAllopregnanolone Preclinical Acute Pharmacokinetic and Pharmacodynamic Studies to Predict Tolerability and Efficacy for Alzheimer’s Disease
To develop allopregnanolone as a therapeutic for Alzheimer's disease, we investigated multiple formulations and routes of administration in translationally relevant animal models of both sexes. Subcutaneous, topical (transdermal and intranasal), intramuscular, and intravenous allopregnanolone were bolus-administered. Pharmacokinetic analyses of intravenous allopregnanolone in rabbit and mouse i...
متن کاملGenetic reduction of striatal-enriched tyrosine phosphatase (STEP) reverses cognitive and cellular deficits in an Alzheimer's disease mouse model.
Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disorder. Early in the pathophysiology of AD, synaptic function is disrupted by soluble Aβ oligomers, possibly through Aβ-mediated internalization of NMDA receptors. Striatal-enriched phosphatase (STEP) is a tyrosine phosphatase that regulates the internalization of NMDA receptors. Recent work shows that STEP is elevated ...
متن کاملWhole-food diet worsened cognitive dysfunction in an Alzheimer's disease mouse model
Food combinations have been associated with lower incidence of Alzheimer's disease. We hypothesized that a combination whole-food diet containing freeze-dried fish, vegetables, and fruits would improve cognitive function in TgCRND8 mice by modulating brain insulin signaling and neuroinflammation. Cognitive function was assessed by a comprehensive battery of tasks adapted to the Morris water maz...
متن کاملCurcuminoid submicron particle ameliorates cognitive deficits and decreases amyloid pathology in Alzheimer’s disease mouse model
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and is triggered via abnormal accumulation of amyloid-β peptide (Aβ). Aggregated Aβ is responsible for disrupting calcium homeostasis, inducing neuroinflammation, and promoting neurodegeneration. In this study, we generated curcuminoid submicron particle (CSP), which reduce the average size to ~60 nm in diameter. CSP had ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 14 شماره
صفحات -
تاریخ انتشار 2010